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Abstract. The paper is concerned with a family of refined models of elastic sandwich plates with soft core. 
Construction of this family is based upon the kinematic assumptions of Dundrovfi, Kovafik and Slapfik [4]. The 
model energy-consistent with this hypothesis turns out to be nonelliptic. However, this model makes it possible to 
find a generalization of Hoff's [7] model in which transverse normal deformations of the core are partly considered. 
A proof is given that both this and Hoff's model is correctly stated irrespective of the choice of fields that describe 
the angles of rotation of the plate cross-sections. On the other hand, in the model of Reissner [18] this flexibility is 
lost and only one choice of fields standing for rotations is admissible - namely that in which the assumptions of the 
Lax-Milgram lemma are fulfilled. 

1. Introduction 

The first successful attempt to describe deformations of sandwich plates with soft core is due 
to Reissner [18]. According to this concept the equations of transversely homogeneous 
moderately thick plates [17] can model deformations of the sandwich plates, provided that 
the bending and shearing stiffnesses are appropriately modified, see also Plantema [14], 
Ganowicz [6], Koczkowski [8]; for further references see Noor and Burton [13]. The 
Reissner [18] model has been generalized by Hoff [7] for the case of plates in which the 
bending energy of face-plates cannot be neglected, see also Wachowiak and Wilde [21], 
Stamm and Witte [20]. Effects due to bending the core have been considered in Eringen [5]; 
transverse shearing deformations of the facings have been described by Yu [22]. Special 
attention should be focussed on the approach of Dundrovfi, Kovafik and Slapfik [4], suitable 
for plates with soft core. In this approach, bending of the face-plates as well as transverse 
normal and transverse shear deformations of the core are taken into account. Moreover, the 
stresses in the core associated with the assumed kinematics satisfy the equilibrium equations 
identically, which distinguishes this approach from the others. 

In [4] the equilibrium equations of the plate model are derived by conventional averaging 
of the equilibrium equations across the thickness, which is called a Boll6-Mindlin manner, cf. 
[19]. In the present paper the construction of the model is based upon the virtual work 
equation which is the Lax-Milgram equation for the three-dimensional elasticity problem of 
the plate. According to this method the kinematic hypothesis (DKS) of Dundrovfi, Kovafik 
and Slapfik leads to a refined plate model in which the strain energy consists of five 
components standing for: energy of in-plane deformations, energy of bending of the 
face-plates, overall bending energy of the sandwich and energy due to transverse shear 
strains and transverse normal strains of the core. The energy thus defined is positive definite, 
which assures that the solution is unique, provided it exists. It occurs, however, that for the 
natural choice of the space V of kinematically admissible fields the bilinear form defining the 
energy is not V-elliptic. The problem of constructing the space in which the solution would 
exist remains open. 
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The proposed sandwich plate model energy-consistent with the (DKS) kinematic hypoth- 
esis is a natural departure point for deriving models of simpler form. Upon neglecting the 
less important terms in the expression standing for the energy of the transverse normal 
deformations of the core, one arrives at a new refined model of the Hoff type. The 
remaining terms standing for this energy introduce some slight modifications to the genuine 
theory of Hoff [7]. It is shown that this amended model is V-elliptic and thus correctly posed. 
Discarding the terms that stand for the energy of transverse normal deformations leads to 
the model of Hoff. Neglecting the energy of bending of the face-plates reduces the latter 
model to the theory of Reissner [18]. 

One of the aims of this paper is to show that in the models of Hoff type the energy of the 
facings makes the model stable in the sense that the model is correctly posed irrespective of 
the choice of kinematic fields allowed within the theory. Moreover, the constant of ellipticity 
does not depend on the relative thickness of the plate. Neglect of this energy results in the 
loss of such arbitrariness. Therefore, in the model of Reissner [17, 18] there is only one set of 
unknowns which assures V-ellipticity of the problem. 

The summation convention is used throughout the paper. Greek indices take values 1, 2. 
Latin indices run over 1, 2, 3. 

2. Problem formulation 

The subject of consideration is an elastic sandwich plate of constant thickness 2h, composed 
of a core layer of thickness 2c and of two external layers (face-plates) of thickness d, see Fig. 
1. The plate is symmetric with respect to its middle plane l). The domain 1) is parametrized 
by Cartesian coordinates (x~). The axis x 3 = z is perpendicular to the middle plane. Thus the 
layers of the plate occupy the following domains: 
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Fig. 1. Geometry of the sandwich plate. 
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x = ( x ~ ) E f L  c<~z<-h},  
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the core: ( x =  (x, z), x@l) ,  -c<~z<~c} ,  

the lower face-plate: { x =  (x, z),  x ~ l ) ,  - h<~z<~-c}  , 

where h = c + d. The middle plane ~ lies on the plane x 3 = z = 0. F+ stand for the upper  and 

lower faces, i.e. F+ = {x = (x, ---h), x E l~}, and F 0 = {x = (x, z), x E y = 01~, - h  ~< z <~ h} 
stands for the lateral cylindrical surface of the plate. 

The face-plates are assumed to be made  of the same anisotropic linearly elastic material  
whose moduli  are denoted by C ijk~. The planes z = const are assumed to be planes of 

material  symmetry ,  hence 

C 3 a ~ '  = C 333a  ~- 0 .  (2.1) 

The core is assumed to be made of a soft material  with moduli  Ci,! kt. The  in-plane stiffnesses 
of the core will be neglected. Thus we assume 

C~ ~x~" = 0, C~ ~33 = 0, C~ 333 = Cc 3t~va = 0 .  (2.2) 

The modulus of transverse shear /x  c = C~ 323 and the Young modulus in z-direction Ec = C~ 333 

are the only non-zero elastic moduli  of the core. The face-plates and the core are assumed to 
be perfectly bonded.  

The  upper  and lower faces z = ---h are subjected to transverse loadings p-*. The boundary  
conditions on the faces z = ---h read 

o-~3(x, + h ) =  0, o-33(x, + h ) =  ++-p+-(x), (2.3) 

where o-iJ(x, z) stands for stresses at point  (x, z). The  own weight will be neglected. 
We shall confine consideration to the case when the plate is c lamped on the lateral surface 

r .  = {(x,  z ) ,  x ~ ~/., - h  ~< z ~< h } ,  

and subject to tractions T i on the remaining part  F~ of the surface F0: 

F~ = {(x, z),  x ~ y ~ ,  -h<~z<~h} ,  

where T =T~ U y,. Let  s parametr ize  the boundary  line % Let  us assume for the sake of 
simplicity that y is a smooth  curve, i.e. it has no corner points, its curvature being denoted 
by r. By n = (n~) and ~" = (%) we denote  the versors outwardly normal  and tangent  to the 
curve y. In the boundary  layer of 1~ one can define curvilinear coordinates parallel and 
or thogonal  to the line y. The components  n~ and % become the fields determined in this 
layer. Their  derivatives are expressed as follows [10]: 

1 1 
n~ ,t~ = - % ~'t~, 7~ ,8 - n~ ~'t3 • (2.4) 

r r 

The in-plane tractions T ~ given on the surface F are assumed to have the following 
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distribution over the thickness: 

+ + + 
p ~ ( s ) +  z r ~ ( s ) ,  c < ~ z < ~ h ,  

T ~ ( s , z ) =  O, - c ~ z < - c ,  (2.5) 

p~ (s) + z - r ~  (s) , - h  <~ z <~ - c  , 

where z ~-= z ~ b, b = c + d /2 .  The transverse tractions are assumed to be piece-wise 
constant, 

I t3(s )  , 

T 3 = (s, z)  -----  t3(s), 
{t3(S) , 

c < ~ z < ~ h ,  

- - C ~ Z ~ C ,  

- h < ~ z < ~ - c .  

(2.6) 

3. Stress and kinematic assumptions of Dundrovfi, Kova~ik and Slapfik 

In this section we recall the (DKS)  assumptions [4] which impose constraints on the stress 
state and kinematics of the sandwich plate. In contrast to the majority of other  approaches, 
the stresses in the core are assumed to be statically admissible. Moreover  the (DKS) 
approach takes into account both transverse and normal deformations of the core. The 
face-plates are assumed to be sufficiently thin so that their transverse deformations can be 
neglected. The drawback of the (DKS) approach is the complicated form of the kinematic 
constraints, which will be discussed in Sec. 4. 

As is typical of plate behaviour modelling, the reduction of the transverse dimension is 
based upon kinematic and stress assumptions. According to the kinematic assumption the 
displacements across the face-plates have the form 

C 

u ~ ( x , z ) = u  ° +-b y ~ - ~ 7 7 d i v ~ , ~  - z w , ~ ,  (3.1) 

- 3 (x ,  z)  = w ,  

where ( + )  refers to z E [ c ,  h] and ( - )  refers to z E [ - h , - c ] ;  77 = ~¢ /E  C. The fields 
0 0 u = (u~(x) ) ,  w = w(x) ,  ~ = ( y , ( x ) )  are referred to the middle plane ~;  div y = y~,~. The 

displacements across the thickness of the core are stipulated as below, 

u ~ , ( x , z ) = u  ° + z - c  % - 6  ~7(3c2- zz )d ivT '~  - z w , ~ ,  
(3 .2 )  

1 b (c 2 z 2) div y u3(x,z)=w+ nc - 

The state of stress within the face-plates is supposed to obey the plane-stress state 
approximation, i.e. 

a~A/~ a 3  33 o "~  = A ya,(u),  cr = o- = 0 ,  (3.3) 

where the tensor A is defined by 

A ~oa~" = C ~oa~" - C a ~ 3 3 C 3 3 A t x / C  3333 . (3.4) 
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The stresses in the core are assumed in the form compatible with simplifications (2.2), 

O ra/3 0 ,  0"33 a/3 33 = = 2/zc3 y,3(u), 0" = EcY33(n ) . (3.5) 

The strains associated with the displacement field u have been denoted by Yij = y#(u)= 
l ( u i ,  j "[- t i j , i ) .  

The kinematic hypothesis (3.1, 3.2) assures displacements to be continuous across the 
thickness. Moreover in each point of the core the equilibrium equations o-~J, i = 0  are 
identically satisfied. To check it one should find strains associated with displacement fields 
(3.1), (3.2). In the face-plates the deformations read 

[ ] y~(u)  = y~,(u °) -+ b y ~ ( y )  + ~ ~?K~(div y )  + zK~,(w),  

"Yk3(U) = O ,  

(3.6) 

while in the core the strain components are 

y~o(u) = y ~ ( u  °) + z -c ~'~o(Y) + ~ (3c ~ - z )~K~(d~ y )  

l b  b 
Ya3(U) = 2 C Ya,  T33(U) = - z  77 div y . 

c 

+ zKo,(w), 

(3.7) 

We have used the notation K~t3(V ) = - - V , ~ .  
The stresses can be found with the help of (3.3), (3.5). One can readily see that 

33 -k-0"33,3 0 for every --c -< z ~ c .  On the other hand one can check that the dis- 0" ,ct = 

tributions of 0"k3 stresses satisfy neither continuity conditions on the interfaces z = - c  nor 
boundary conditions (2.3) on the faces z = - h .  The conditions ~3 0" (x, +--h)= 0 could be 
fulfilled, if the displacement distributions (3.1) would involve third-order polynomials in z. 

4. Energy-consistent approach 

The equilibrium of the plate is governed by the equation of virtual work 6 W = 6L,  with 

o 6 W = 0- 3"yi ] dx d z ,  

6L=fhhf~, , .  T'6uidsdz+f. [p+6u3(x, h) + p-6u3(x ,  - h ) ]  d x ,  
(4.1) 

to hold for every kinematically admissible trial displacement field 6u. A two-dimensional 
plate model is called energy-consistent [15], if it is based on a two-dimensional virtual work 
equation which arises as a consequence of direct substitution of the a priori assumed 
stress-displacement hypotheses into the variational equation (4.1). This section is aimed at 
deriving the model energy-consistent with the assumptions (3.1)-(3.5).  Such a model has not 
been discussed in the monograph [4], where two-dimensional plate equations have been 
found in the Boll6-Mindlin manner. 
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4.1. Basic equations and boundary conditions 

Upon considering the assumptions of Sec. 3 one can reduce the virtual work of stresses to 
the form 

6 W =  (N 3 T ~ + M  6 k ~ + ~ a t G ~ + G  6 g ~ + Q  ~y~)dx ,  (4.2) 

where 

3~,~ = y,~t~(6u°), 6k,~t3 = K~(aW), 6p,,~t~ = y,~(6y) ,  6g~  = K,~t~(div By) .  (4.3) 

The stress resultants involved in (4.2) are given by 

N~t 3 = N+ ~ + N~2, M ~e = m+ e + m~f + M~ t~ , 

b $ 6 ~  ' Q~ b O ,  ' G~ ~ 1 ~cZM~ft~ 

where 

fc h f _ :  d/2 
N~+t~ = o-~t~ dz, N~ t~ = o-~ dz, m~+ t3 = ~ (z -w b)(r ~ dz, 

- J-d~2 

M ; t ~ = b ( N + I ~ - N ' ~ ) ,  Q"=fCco-"3dz ,  S = f ~ _ z o - 3 3 d z .  

The quantities N~ t~, m~ t~ are stress and couple resultants referred to the middle planes of the 
faces, respectively; Q~ are transverse forces in the core and S describes the resultant of o -33 
stresses that rend the sandwich in the transverse direction. M7 t~ represent moments of 
in-plane forces of the faces, referred to the z = 0 plane. 

Therefore, by their definition, the quantities N ~ are conventional resultants of the 
in-plane stresses, M ~ represent the total moments referred to the middle plane and Q~ are 
transverse forces corrected with the coefficient b/c. The term underlined in the definition of 
~ e  is a consequence of taking into account the transverse stretching of the core. G ~ are 
extra moments due to the nonlinear distribution of stresses o -~t~ across the plate faces. 

The stress resultants N, M, ~111, G, Q are interrelated with the strain fields " ~  = y~(u°) ,  
k ~  = K~(w),  (ye),  /Ge = Y~(~') ,  g ~  = K~(div ~,) according to the formulae 

N ~  = 2dA~au~a~, ' 

M "t~ = -~ + 2db A kay. + 2db ~A tx,,, + ~ rlc ga~, , 

2 , c b  tXc 6 ~ )/xaf, + 2db 2A ~t3a~" + 1 r/c2gau ) y)~'~ (2db2A "t3a~" + -5 

2 2 2 .t~,~,( 1 2 )  
G ~ = -5 rldc b ",4 kay, + txaj. + -5 ~7c g,~ , 

(4.4) 

Q~ 2 
= 7 b21~c~C"~'YO " 
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The relation between Q~ and ~/~ follows directly from the kinematic assumptions. To 
improve accuracy of this relationship one can introduce a shear correction factor, cf. Mindlin 

[111. 
Let  us explain now why the shearing stiffness turned out to be 2b2txc/C and not 2c/z~. 

According to the relation (3.7)2 the resultant shear/3~ of the core r e a d s / 3  = 2~/,~3 = (b/c)y~. 
This equation can be rewritten in the form 

d 
/3~ = X, + Y~, X,~ = ~cc % "  (4.5) 

The  above relations are illustrated in Fig. 2 where we have assumed that u ° =  0, w = 0, 
y~ = const. Note  that the equation cx~ = (d/2),/~ follows from a geometrical consideration. 

The  following identity holds, 

Q /3, = Q 3y~,  (4.6) 

where ~ ) "=  2ci~6~'fl~,. Of the two possibilities /3~ and -/~, it will appear that the latter 
unknowns are more convenient.  

Let  us pass now to evaluating the virtual work of external loading. The work of transverse 
loading p-+ equals 

6L1 = f a p  6w dx, p = p+ + p -  (4.7) 

After  integration over  the thickness and integration by parts with the help of the formulae 
(2.4), the virtual work of the tractions T i applied to the boundary F,  can be cast in the form 

- o - o O_ w 6 L  2 = (N,3u, ,  + N , ~ u ,  + - 

JFdn~l n JF d.r~'yr) as .  (4.8) 

The effective boundary forces and moments  are 

d/2  - -  
d/2  

0 

L 

b 

C 

Fig. 2. D e f o r m a t i o n s  d u e  to  s h e a r  o f  t h e  c o r e .  N o t e  t h a t  CC'  = c x .  a n d  CC'  = ( d / 2 ) 3 , . ,  h e n c e  X.  = d ( 2 c ) - 1 %  • 

. . . .  I 
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0 = Q + A~t . . . .  O = 2(dt 3 + ct3) , 

+ d 3 
)~1 =1~/1 T~, ~/1 =db(p~ -p~)+-i~(r+~ + r ~ ) ,  

d 2 - + 
iVI. = )Vl n~,  G .  = G ~ n ~ ,  G~ = ~ bc rl(p~ - p~ ) , 

2 2 c 
6~ = 66 r~, 6 = ~ ~7c bt3, O, = - 6  . . . .  

= @o : d b ( p :  - ) , 

(3n=- - - i  6 r , ~ W ~ n + l  6 ,  ~ n = ~ , ~ n a .  
Y r 

(4.9) 

Having found the expressions (4.2) and (4.8) one can arrive at the equilibrium equations 

- N ~ , ~  =0 ,  - M ~ , ~ t  3 = p ,  

-~3~,~  + 6~G*~,~t3 + Q~ = 0 ,  (4.10) 

to be satisfied in f~ and natural boundary conditions along the arc %, 

a = G , ,  G - G , ,  + 1 G , = ( 3 , ,  a , , . = - O , ,  
r 

(4.11) 
1 

r r 

r G . , . + a  . . . .  - a , . : ( 3 . ,  

where 

(N,, M, ,  T)~,, G,) = (N ~,  M ~,  ~£I~ ~ ,  G ~ ) n  ~n~ , 

(N., M,,  93~ , GT) = (N ~,  M "~, 93U ~, G ~ ) n  ~ % , (4.12) 

G = G~,~n~,  (3 = G ~ , ~  . 

One can note that the above problem of finding (u °, y, w) splits up into two independent 
problems: the conventional plane-stress problem of finding the field u ° and the bending 
problem of finding (y, w). 

Equations of equilibrium can be expressed in terms of displacement fields. In the general 
case their form is complicated and will not be reported. Let us display them in the case when 
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the face-plates are isotropic, i.e. when 

[ A ~ " "  = g ( ~ z ' ~  + ~ " a ~ " )  + T -  v 
_ _  6~t36a~" ] , 

where /x  stands for the shear modulus and v for the Poisson ratio of the facings. 
The in-plane equations read 

l + v  o 
au°  + u . . . .  = 0 .  (4.13) 

The equations of bending have the form 

41"~db2 A ( w , ~  1 nc2Aw,~)  + 2db2/xA3'~ 
i -  -i - 5  

[ 1 + U b 2 + 2  ] - - 2 b 2  
+ 2dtz 1 - v -~ ~Tl~cb 2 div Y,~ c / z %  

4 tx .f]2c4b2A2 3 l - u 8  dlxn ( c b ) Z A d i v y , ~ , + ~ d  1 - ~  d i v y , , ~ = 0  

I~ (d___3+4db2)A2 w 4/xdb2 A(div ,y - 1 T ) = p  1 - u i C -~ ~ TI c2 A div . 

(4.14) 

Let us define the function X = 3'1,2- 72,1. One can check that this function satisfies the 
following equation, 

10 
AX -- ~5 X = 0 ,  (4.15) 

where 

kt = ( lOcdg/tz~) '/2 . (4.16) 

The equation (4.15) is a counterpart  of the boundary-layer equation of the theory of plates 
with moderate  thickness [8, 9]; h occurs to be an average thickness of the plate. 

4.2. Formulat ion o f  boundary  value prob lems  

Let l~ be a domain with a Lipschitz boundary y, cf. [12], without corner points. For the sake 
of simplicity let us assume that the plate is clamped along F u = F0, i.e., % = y. The space of 
kinematically admissible fields u °, y, w can be defined as below 

V(a)  = [/4~(a)] 2 × [H~0(a)] 2 × H ~ ( a ) ,  

where H~(I)) is a Sobolev space of functions whose traces and traces of their derivatives 
O~/On t, l =  1 , . . . ,  k - 1 ,  vanish on 3'. Moreover  let us assume that there exist positive 
constants k~ such that 

A~t3~"a,~t3aa, , <~ kla,~t3a~t 3 , A~t3~"a~t3aA~ >t k2a~,t3a~,t3 (4.17) 
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for every a = (a~t 3) E M~; M~ stands for the space of real symmetric 2 x 2 matrices. The 
remaining moduli ~7, /z  are positive. Moreover we assume that p E L2(O). 

The virtual work of stress resultants (4.2) can be rearranged into the bilinear form 

a(u ° % w; v °, ,1', v) 

= 2 d A ~ * " y ~ ( u ° ) ~ , , ( v  °) + 2 i ~  .a Ko~(w)~,,(v) 

b 2 2 2 
+2 --c tXcT~O~' + -~ cb rll~ ~ div V div 

[ + c 2 1 2  ]} 
+ v~(q ' )  - 5 nc ~0 ,,~. dx 

(4.18) 

where v ° = 6u °, 0 = 6V, v = 6w. One can see that the bilinear form a: V(I)) x V(g~)--> R is 
symmetric, and, by virtue of the estimate (4.17)2 , is positive definite. 

The virtual work of external loading can be expressed by the linear form f :  V(g~)--> R 
defined by 

f(v)  = fa pv dx .  (4.19) 

The boundary-value problem of the clamped plate reads 

( f ind  (u °, V, w) E V(g~) such that 

(~a) ~[a(u o, ~', w; v °, ~0, v) = f ( v )  for every (v °, qt, v ) E  V(g~) . 
(4.20) 

By standard arguments we conclude that u ° =  0. Moreover, one can easily prove that the 
solution (% w) is unique. However, we shall prove below that the bilinear form a(. ; . )  is not 
V(g~)-elliptic, thus the assumptions of the Lax-Milgram lemma are not satisfied and the 
problem of whether the solution (% w) exists will remain open. To prove that the form 
(4.18) is not V(fl)-elliptic let us start with 

L E M M A  1. Let ~ satisfy the above-mentioned conditions. For every M > 0 there exists 
E H~(g~) such that 

2 2 (4.21) 

The proof of the lemma is standard and will be omitted. 
To prove that the bilinear form a( . : . )  is not V(fl)-elliptic, it is sufficient to show that for 

every constant c 1 > 0 there exists z = (u °, V, w) ~ V(~) such that 

2 a(z; z) < c I [IZllv(a) . (4.22) 

Let us fix c~ > 0  and take z = (0, V, 0), where V = (3'1, Y2), % = q%2, 3'2 -- - ~ , 1 ;  q~E H~(I~). 
Since div V = 0 one gets 

a(z; z) = 2b 2 /a [ dA "~*"Y~ ( "r )Y~" ( Y ) + l- & Y" Y~ ] dx (4.23) 
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With the help of the relation (4.17)~ one can fix a constant k 3 > 0 such that 

a(z; z) ~< 2 2 - -  k 3 [[V(I)[[ [H~(n)]2 (4.24) k3llr Ilt.0~m)]~ 

According to Lemma 1, for a constant M = k3 /q  one can choose a function d~ E H4(f~) such 
that 

k3 2 2 
= cHZl[vm ) (4.25) a(z; z) < ~ IIw'llt.g(.)   

Thus the bilinear form a(.; .) is not V(f~)-elliptic, which suggests that the solution to problem 
~1 should be looked for in another space. The existence problem remains open. 

5. Generalized model  of  Hoff  

In this section we derive and discuss a generalization of the Hoff's [7] model of sandwich 
plates. Apart  from the effect of bending of face-plates considered in the original paper by 
Hoff  [7], the proposed description involves an effect of transverse normal deformation 3'33 of 
the core. 

5.1. Formulation 

Let the maximum eigenvalue of the strain tensors /x~, and k~, be denoted by m and k, 
respectively. Let L stand for the wave length of the deformation pattern associated with 
deformations/x~, .  Hence /z,,  = O(m), /za,,~ = O ( m / L ) ,  tzA, ,~ = O(m/L2) .  

The model to be put forward is based upon the following assumptions: 

( c / L )  2 ~ 1, ( c / L )  2 ~ k / m .  (5.1) 

According to them one can make the following simplifications, 

[ 1(C)2] 
/ z , , + S r / c g , , =  1+  5 r /  ~ O ( m ) = O ( m ) ,  

(5.2) 
k,,+-~rlcg~,= l+ r l~  Z O(k)=O(k). 

Thus according to the assumptions (5.1) the tensor g ~  can be neglected in the constitutive 
relations (4.4) and in the expression that defines the strain energy. The virtual work of 
stresses takes the form 

8 W =  (N 6 3 " ~ + M ~ 6 k ~ + ~ 6 1 % ~ + Q  63'~)dx, (5.3) 

where N ~ ,  Q~ are given by (4.4)1, (4.4) 5 and 

M ~ = + 2db A k,~ + zao ,,i tx,~ , 
(5.4) 

2 2 ~/3 ,~  • l cb6  6 Jt.L~ ~JU t3 = 2db2A~t~a~k~, + (2db2A ~t3~" + ~ 
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Similarly one should simplify the virtual work of boundary forces T ~. To make the expression 
for 6L 2 compatible with formula (5.3), we neglect the terms depending on ~7. Hence we 
obtain 

f / -  

J .  ~,~| "8  0 O~w - ~ , ~ w , ,  + 3e°sv, + @,ev,)  ds. 6L = p 8w dx + (l~I~Su ° + N, u, + (5.5) 

The equilibrium equations have the form (4.10) with the term Ga",a~,, omitted. The 
boundary conditions along % are 

N. = f¢~, N. = re,, M"~,zn~, + M. , .  = Q ,  
(5.6) 

As previously, in the case of face-plates being isotropic, the equilibrium equations can be 
expressed in terms of kinematic fields. They assume the form of equations (4.13), (4.14) 
with the underscored terms omitted. The boundary-layer equation (4.15) remains un- 
changed. 

5.2. Boundary-value problems 

As in Sec. 4.2 let us assume that the plate is clamped along its boundary.  The space of 
kinematically admissible fields u °, % w is here defined by 

W(a)  = [Ho~(a)] 2 x [Ho~(a)] 2 x Ho2(a). 

The conditions (4.17) and the assumptions concerning regularity properties of the domain f~ 
and of the loading p are preserved. The bilinear form associated with the expression (5.3) 
will be denoted by a a ,  (. , .  , .; . , . ,  .); a a , :  W(ft) x W(~)---~ R is defined by the formula 
(4.18) with the underlined terms omitted. The form aaH(.; .) is still symmetric and positive 
definite. Moreover,  one can prove that this form is W(ft)-elliptic. Since this proof is similar 
to the proof  of ellipticity of the bilinear form of the Love's first-order linear shell theory [1], 
only an outline of the proof  will be reported. 

By virtue of the positive definiteness condition (4.17)2 one can estimate 

d 3 
0 0 2 

aa~/( u°, Y, w ; u °  T, w)~2dk21lY, o(u )%t3( u )[I + k 2 - ~ - r l ~ ( w ) ~ o ~ ( w ) l l  = 

b 2 
+2dbak2]l p,~p~e II 2 + 2 - -  /tell% % I12 , (5.7) 

C 

where [1" I{ stands for the norm in Le(Ft) and p~o = K~(w)  + )',t~(Y)" Now we can estimate 

/3 
[[po~p~[I 2 i> ~ Ilvo~(~,)vo~(r)ll 2 - /311K,~(w)~(w)l l  ~ , (5.8) 

where/3  > 0 ,  and choose/3 such that /3 < ~(d /b )  z. Thus there exists a positive constant k 4 
such that 

aa.(z; z)>~ k4[ll%a(u°)%o(u°)[[ 2 + [[%y~ I[ 2 + I] K~O (w)K~(w)l] 2 + II%~(~')na(~')ll~l, 
(5.9) 
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where z = (u °, % w). For simplicity the differences in dimensions of the terms at the 
right-hand side of (5.9) have been neglected. By applying the Korn inequalities in a standard 
manner [1, 12] the W(fI)-ellipticity of the bilinear form acL, (.; .) follows. Furthermore one 
can show that this form is continuous. Thus according to the Lax-Milgram lemma the 
problem 

. f f ind  z = (u °, 7, w) E W(I~) such that 

(~2)[aa~/(z;" v) = f ( v )  for every v = (v °, qs, v) E W(I)) 
(5.1o) 

is well-posed; its solution exists and is unique. 

6. The model due to Hoff 

In this section a model will be discussed that follows from the one derived in Sec. 5 by 
neglecting the transverse normal deformations of the core. It will be proved that this model, 
coinciding with the model of Hoff  [7], cf. [20, 21], is well-posed. 

6.1. Formulation in terms of  u °, % w 

In the kinematic assumptions (3.1), (3.2), we take into account the transverse normal 
deformability of the core. To derive the model in which this effect is neglected one should 
assume that E¢ >>/x~, viz. one should substitute ~7 = tz~/E¢ ~ 0 into the definitions of 6 W and 
8L.  Then the virtual work of stresses assumes the form (5.3) in which the stress resultants 
N ~ ,  Q~, M ~ are expressed by (4.4)~, (4.4)5 and (5.4)1, respectively, while 

2 a/3A/x 
~ = 2db ~ (ka~ + I~,~) . (6.1) 

The virtual work of external loading is given by the formula (5.5). Also the boundary 
conditions (5.6) preserve their form. Moreover, it is readily seen that the bilinear form 
associated with the present formula for 6 W is W(fI)-elliptic; the proof given in Sec. 5.2 holds 
good in the present case. Thus the model of Hoff  is well-posed. 

6.2. Introduction of  the total angles of  rotation 

The angles % do not stand for the total angles of rotation of fibres which lie on the plate 
middle plane. The total angles of rotation equal % = - w , ~  + 3'~- The deformations %~ (~o) 
associated with the field ~p will be denoted by p~a. Then 

p ~  = k ~  +/z~t ~ . (6.2) 

Let us introduce the moments of stresses in external layers: J/U ~ = M ~t3 - ~0~ ~ .  The virtual 
work (5.3) assumes the form 

6 W =  [N 6~,~t3 + ~ k ~ t 3  + ~ 6p~ + Q ( 6 % + 6 w , ~ ) ] d x  (6.3) 

where N ~ is given by (4.4)i and 
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d 3 
2 c~/3~t~ JIl "tJ = 2 -~ -- .~ ,,, , 

(6.4) 
Q ~ = 2  b2 ( w , ~ + ~ ) .  

¢ 

Similarly one can rearrange the virtual work of external loadings. Since the boundary line 
has no corner points the expression (5.5) takes the form 

fa f ~  - ° - 8 ° 6L = p ~ w d x +  [Nn6Un+N . u ~ + ( Q + ~ / g ~ , ~ ) 6 w - a f f ~ 6 W , n + ~ , 6 q ~ n + ~ 6 q ~ ] d s  , 

where 

(6.5) 

d 3 
~ n = ~ n ~ ,  , / ~ = J ~  %, ~ = ] ~ ( r ~ + r ~ - ) .  

Having found the virtual work equation 6 W = ~ L  one can derive the equations of 
equilibrium, 

- N ~ , ~  =0,  -Q~ , .  - J//~,~¢ = p ,  

- ~ , ¢  + Q ~ =  0 ,  

and natural boundary conditions along y~, 

Q"n~ + J/l~,~n~ +J/g,, ,  = Q + ~/I . . . .  

(6.6) 

(6.7) 

while the equations for u ° have been given by (4.13). Moreover, one can note that (4.15) 

holds good here; X = "}/1,2 - 72,1 = ~1,2 - ~°2,1. 

R E M A R K  1. In the theory of sandwich plates proposed by Mindlin [11] the in-plane work 
of stresses in the core is additionally considered. If one neglects this work one obtains the 
model equivalent to the model of Hoff. Between Mindlin's kinematic and stress fields v, qJ~, 
Q~, N~t 3, ~ and the entities used in the present paper the following relations hold: 

l + v  ) b 2 
-2db2t ,  A~p~ + ~ - v  ~ . . . .  + 2 --c tzc(~, + w,~) = O, 

d3tx b 2 
3(1 - v) A 2 w  --  2 --c /xc(Aw + d i v ¢ )  = p ,  

(6.8) 

where ~ n  = ~ n ~ n ~ ,  ~ = ~"~n~ r~. 
The equations (6.6) can be expressed in terms of kinematic fields. In the case when the 

face-plates are isotropic, see Sec. 4.1, these equations read 
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V : W ,  qJ~= - 1  w , ~ + - q  L ,  
C 

c 1 
Q ,  = ~ Q ~, 2¢'~t3 = ~ g3~t3, ~ t 3  = ~ ~t3 . 

Thus ~b + w,~ =/3~, standing for shear deformations of the core, see (3.7)2 and (4.5). 
However ,  Mindlin's choice of unknowns makes a direct passage to the simplified model of 
Reissner [18] impossible. 

6.3. Variational formulation of boundary-value problems 

Change of the unknowns from u °, 7, w to u °, (p, w does not violate the W(F0-ellipticity of the 
problem of the clamped plate. One can show that the bilinear form associated with the 
virtual work (6.3), 

: f [ a/3Zp~ 0 ¥O 
an(u °, ,p, w; v °, qJ, v) J a t  2dA %~(u )y,~,( ) 

d 3 
2 a13AJz + --ff + edb  

b2 ] 
+2 - -  p,c(w,,~ + qL)(v,,~ + ~0,~) d x ,  

C 
(6.9) 

is symmetric and W(lI)-elliptic. Thus the problem of the clamped plate, 

f find z = (u °, (p, w) E W(ll) such that 

(~3)~a~(z;" v) = f(v) for every v = (v °, ~,  v) E W([I) , 

is correctly posed. Other boundary-value problems admissible within the framework of this 
theory can be formulated by appropriate change of the space W(II) and the linear form f(.). 

R E M A R K  2. Let us note that the bilinear form all(.; .) is similar but not identical with the 
bilinear form of Reddy [15], see [2, 9], 

~--- f f a/3AIx U 0 0 ajR(u °, (p, w; v °, ~,  v) j~ ~2hA ,,/,,~ ( ) y ~ ( v  ) 

2h 3 ,~x. 5 ot 3,8 3 . 
+ - 5 -  A r °" (e ) r "~(q ' )  + 5 hC (w,o + ~o)(v,~ + %) 

h 3 
+ - ~  A~'Xz[3,~,(~o ) - K~t3(W)][~'A,(qt ) -- K~,(V)]} d x .  (6.10) 

The above form refers to the case when the plate is transversely homogeneous.  The 
nonlinear terms have been omitted. 

In both theories of Hoff  and Reissner the unknowns qL can be replaced by any 
combination aq L + bw,~ and both theories will remain correctly posed. We shall see later 
that such a flexibility does not hold in the theory of Reissner [18]. 
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7. On the Reissner [18] theory of sandwich plates 

7.1. Passage to the model  o f  Reissner 

In the simplest possible model of sandwich plates with soft core the total energy is a sum of 
the energy of the in-plane deformation of face-plates, of the resultant bending deformation 
and of the shearing deformation of the core, see Reissner [18]; see also [6, 11, 14, 20]. This 
model can be arrived at from the model of Hoff  by neglecting 

(i) the bending energy ~ k ~  stored in the~face-plates, 
(ii) the work done by the couple resultants ~ .  

Thus in the model of Reissner the terms underlined in the expressions (6.3), (6.5) and in the 
equations of equilibrium (6.6), (6.8) are omitted. The number of natural boundary condi- 
tions is reduced from six to five. These conditions read 

N,  = ~I n , N~ = N~, Q"n,~ = Q, ~ff~n = ~ n ,  ~ffff~,r = ~}~..  (7.1) 

R E M A R K  3. By virtue of assuming the quantities q~ as unknowns in the model of Hoff  the 
passage to the model of Reissner is based upon only two simplifications (i), (ii). In the paper 
of Mindlin [11] this passage could have been shown only under an additional approximation 
cqJ,~ - (d/2)w,,~ ~- cq~,~, see Remark 1, which has led to the incorrect formula 2c/z c for the 
shearing stiffness. However, its value can be amended by introducing a shear-correction 
factor. 

7.2. Well-posedness o f  the boundary-value problems expressed in terms o f  (u ° ~p, w) 

Let 1) satisfy the regularity conditions assumed in Sec 4.2. For the sake of brevity let us 
suppose that the plate is clamped along F u = F o, viz. Yu = Y. The space of kinematically 
admissible fields (u °, ~, w) is 

U(t~) = [Hlo(a)] 2 x [Ho~(~Z)] 2 x Ho~(t~). 

The bilinear form of the Reissner [18] model, 

loI  o aR(uO, ~,  w; vO, llt, V) = 2dA  y,~(u )3%,(v °) 

+ 2 - -  + + v , o )  d x ,  
c 

(7.2) 

is symmetric, continuous and U(ft)-elliptic. Continuity follows from relation (4.17)1. The 
outline of the proof of ellipticity is as follows. According to the inequalities of Friedrichs and 
Korn there exist constants c 1, c 2 such that 

w,~ w,~ dx/> c 1 [I w II,o'~,~, (7.3) 

I> iit,,+ .)j2.2 (7.4) 



For every/3  > 0 one can estimate 

fo J = (q~ + w, ,  )(q~ + w,~ ) dx i> ] - ~  

and by virtue of (7.3) one has 

/3C1 2 2 J>~ T ~  Ilwll.6(.)-/311,'11 , 
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w,~ w,~ dx - /3  fn ~o ~ dx , 
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(7.5) 

where I1.11 = II.IIL2¢~. By using (4.17)2 and the inequality (7.4) one obtains 

fn 2db 2A~X~'y~t3(~p)ya~ ((p ) dx >i 2db 2kzc211,, , iit,,1~.,22 
(7,6) 

ff~ a/3hp.. 0 0 2 ( u ) y ~ , , ( u  °) dx >I 2dA -y~ 2dk2c21[u Ilt/~(,~j= 

For /3  < dckzcz/iX c there exists a constant c 3 > 0 such that 

aR(z; z) o ~ 2 2 >- 1[ [.~(a~l ~ + c3[llu IIt.~<.)j2 + II*' II 
(7.7) 

2 
= c311z l l~ .~ ,  

where z = (u °, ~o, w), which confirms that the bilinear form (7.2) is U(f~)-elliptic. Let it be 
emphasized here that the above consideration is correct provided that all entities are 
non-dimensional. Thus, the following problem, 

[ find z = (u °, (p, w) ~ U(I-I) such that 

(~)4)[aR(Z ; J  V) ~-f(O) for every v = (v °, tO, v) E U ( ~ ) ,  

is correctly posed. 

7.3. Non-correctness of the boundary-value problems expressed in terms of u °, y, w 

Let z = (u °, y, w) and v = (v °, 6, o) belong to the space W(f~), see Sec. 5.2. We define the 
bilinear form bR(.; .) by 

bR(Z; v) = aR(U °, q~, W; V °, 8, V). (7.8) 

Hence 

bR(z; v) = ~t3~, o o 2dA y ~ ( u  )ya~(v ) + 2 - -  /xcy~8~ 
C 

+2db2A~a~'[y~t3(y ) + K~t3(w)][%~,(8 ) + Kx~,(v)]} d x .  (7.9) 

Prior to showing that bR(. ; .)  is not W(12)-elliptic let us refer to 
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L E M M A  2. Let 1~ satisfy the regularity conditions assumed in Sec. 4.2. Then for  an arbitrary 
constant M > 0 there exists w E H2o(fl) such that 

f a w , ~ w , ,  d x < M f a ( w Z + 2 w , ~ w , ~ + 2 w , ~ w , ~ ) d x .  (7.10) 

As it is standard, the proof  of this lemma will be omitted. 
Having recalled the inequality (7.10) one can show that for every M I > 0  there exists 

z = (u ° y, w) E W(~) such that 

b n ( Z ;  Z) < M 1 IlZl[ 2 (7.11) w ( ~ )  • 

Let us fix M 1 > 0 and choose z = (0, Vw, w), w E Ho2(l-l). Then 

b2 fn bR(Z;Z ) = 2  - -  tz c w,~w,~ d x .  
C 

2 According to Lemma 2 for M = M~c/2b tx c there exists w E H02(II) such that 

bR(Z;Z) < 2 -  I~cM (w2 + 2w,~ w,~ + 2 w , ~ w , ~ ¢ ) d x  
C 

= M l [ f a ( w Z + w , , ~ w , . + w , , ~ w , . ~ ) d x + f n ( y . % + y ~ , ~ Y . , ~ ) d x  ] 

2 
= M, [IZllw(a) , 

which confirms that the bilinear form is not W(fl)-elliptic. 

8. Concluding remarks 

It has been shown that the model of Hoff  can be formulated in terms of the fields u °, 
= a~o + bVw, and w; a, b being arbitrary constants. Then we have proved that neglecting 

the bending stiffnesses of face-plates deprives the formulation of the model of such 
flexibility. It occurs that Reissner's model should be cast in terms of u °, ~o, w. This choice is 
physically correct because % stand for the total angles of rotation of fibres lying on the 
middle plane. Moreover ,  this is the only choice that assures ellipticity of the bilinear form 
an(.;.) .  In other  words, if we assume 0 = a~o + bVw as unknowns that replace ~o, then the 
condition of ellipticity stipulates that b = 0. This remark refers not only to the theory of 
sandwich plates but to all versions of the Reissner [17] theory of homogeneous plates with 
moderate  thickness, in particular to those discussed in the recent review paper by Reddy 
[16]. Therefore ,  let it be emphasized here that the novelty of a theory of plates cannot be 
appreciated until the relevant bilinear form is found and compared with that of Reissner. 

Both the Hoff  and Reissner models are elliptic. However ,  note that the c o n s t a n t  k 4 in 
(5.9) depends upon the ratio d/b  while the constant c 3 in (7.7) depends upon dc. After  
introducing non-dimensional coordinates the latter constant would depend on dc/l 2, l being a 
diameter  of 12. Thus the constant c 3 depends on the relative thickness of the plate. This 
dependence makes the straightforward application of the finite-element method impossible, 
and special rearrangements are necessary, cf. Brezzi and Fortin [3]. 
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